
Int. J. S"fjds Structures, 1972, Vol. 8, pp. 1073 to 1087. Pergamon Press. Printed in Great Britain

INVARIANT IMBEDDING AND OPTIMUM BEAM DESIGN
WITH DISPLACEMENT CONSTRAINTS

NESTOR DISTEFANO and RICARDO TODESCHINI

University of California, Berkeley, California 94720

Abstract-In the present paper, the condition of optimality for a beam under elastic foundation subject to a
displacement constraint are derived from the calculus of variations and subsequently employed as the starting
point in the development of a stable method for the numerical solution of the optimization problem. Using
ideas of invariant imbedding and the method of successive approximations, the pertinent nonlinear boundary
value problem is reduced to a two sweep iterative procedure in terms ofa system of Riccati differential equations
subject to initial values, exhibiting favorable stability properties. Two examples thoroughly developed, are
finally presented to illustrate the application and the accuracy of the method.

1. INTRODUCTION

A CLASS of well posed problems in beam optimization may be formulated by requiring
minimum volume subject to appropriate constraints on the displacement field. A number
of papers have been devoted to this problem [1-3]. While in those papers the derivation of
pertinent conditions of optimality have been mainly emphasized, a systematic treatment
of the solution of the resulting nonlinear boundary value problem appears to have been
neglected in the literature. Interest in this direction ofresearch stems from obvious practical
considerations in addition to some fundamental ones. In effect, the nonlinear-boundary
value character of the necessary conditions prevents in general a direct treatment of the
equations by means of standard numerical techniques. Thus the interest to reduce this
problem to alternative initial-value formulations for which many standard numerical
procedures are available. This problem has been extensively studied in connection with
optimal control theory. For example, see [4J for references. Unfortunately, the methods of
control theory cannot in general be applied directly to the present type of problems,
mainly because of the different character of the equations involved. While in the theory of
control of dynamical systems the equations of evolution are initial valued, in structural
mechanics we usually deal with spatial descriptions in terms of differential equations
subject to boundary conditions. It seems therefore, that future research efforts in this
direction should recognize this fact, particularly in those problems associated with the
stability of the resulting numerical algorithms.

In the present paper we use the calculus of variations in the fashion of Pontryagin's
minimum principle to derive optimality conditions for a beam under elastic foundation
subject to a displacement constraint. We present this problem as representative of a larger
class of problems in structural mechanics rather than one of particular importance on its
own. Using ideas of invariant imbedding and the method of successive approximations, the
pertinent nonlinear-mixed-boundary-value problem is reduced to a two sweep iterative
procedure in terms ofa system of Riccati differential equations subject to initial values and
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exhibiting favorable numerical stability properties. Two examples, thoroughly developed,
are finally presented to illustrate the application and the accuracy of the method.

2. FORMULATION OF THE PROBLEM-NECESSARY CONDITIONS

We consider a beam of length L supported on elastic foundation with coefficient k(x)
and subject to external forces q(x). If u(x) denotes the deflection, v(x) the slope, m(x) the
bending moment and t(x) the shear, the constitutive equations of an Euler-Bernoulli beam
are given by

and the equilibrium equations by

du
dx

dv

dx

v,

1
--m,

rx

(1 )

-t,

where

dm
dx

dt
dx = q-ku,

rx = EI,

(2)

(3)

is the stiffness, I the moment of inertia and E is Young's modulus. We choose the stiffness rx
as the design variable and assume that the area A of the cross-section of the beam is given
by the formula

A(x) = g(rx, x), (4)

(5)

where g is a function that depends on the particular geometry of the cross section. For
example, for rectangular beams with constant width b and variable height h, g = (12b2 rx/
E)113. The volume of the beam is given by

J
I-

V = 0 g(rx, x) dx.

Considering u, v, m and t subject to an appropriate set of boundary conditions, we can now
formulate the following minimum volume problem for a prescribed displacement u 1 at
x = X 1 and additional inequality constraints:

Minimize the quantity V given by (5) subject to the conditions

u(X 1) = U b

({Jo(rx, x)s 0,

and possibly to a number of additional constraints

(6)

(7)

i = 1,2, ... (8)



(9)
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We assume that this optimization problem is well posed, i.e. a solution exists, is unique
and continuous with respect to boundary conditions and constraints. The study of classes
of constraints under which a given optimization problem is well posed, is one of great
interest and importance, but it is beyond the scope of this paper whose main purpose is the
discussion of numerical computational procedures.

The derivation of necessary conditions for this problem can be done using the calculus
of variations. In order to incorporate the constraint on the deflection u, instead of (6) we
consider the equivalent integral expression

f: u(x)b(x-xl)dx = u l ,

where b is the Dirac delta. Now we form the Hamiltonian

(10)

(12)

where A and ACA4 are Lagrange multipliers used to incorporate the constraints (1), (2)
and (9). It is well known (see for example [5J) that the multipliers must satisfy the adjoint
differential equations

dA _ aYf = 0-
dx au, '

dA, aYf
- -- = U 4 -Ab(x-xd,
dx au

dA z aYf
-- -AI' (11 )

dx au

dA3 aYf 1
- ----A
dx a - z,m (l

dA4 aYf
- -----at = A3 •dx

From the first equation (11) we see that A is a constant, to be chosen such as to enforce
condition (6). Comparison of (1) and (2) with equations (11) shows that the Lagrange
multipliers A, , Az , A3 and A4 are the forces and displacements of the beam subject to a virtual
concentrated load of intensity Aat x = XI. More precisely,

A3 = AD,

Az = -Am,

Al = -Ai,

where it, D, mand i are the displacements and forces due to a unit virtual force at XI .
Minimization of (10), taking into account (12), yields the optimality condition

(lopt = arg m!n[/:m +g(a, X)]. (13)
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(16)

where lXopt denotes the optimum design. It can be proved that (13) furnishes a sufficient
condition for a relative minimum, under appropriate convexity conditions on function
g(lX, x).

3. AN ALTERNATIVE DERIVATION OF THE OPTIMALITY CONDITION

Instead of incorporating the differential constraints (1) and (2) using the Lagrange
multipliers AI, ,,1.2' ,,1.3 and ,,1.4' we can proceed in the following way. In place of (9) we use
the integral representation

U 1 = f (m; +kUU) dx, (14)

furnished by the theorem of virtual work, where mand Uare the moment and the displace
ment, respectively, of the beam subject to a virtual load applied at x 1 and in the direction
of the prescribed displacement. Combining (5) and (14) we form the Hamiltonian

£1 = g(lX, x) + ,,1.( mlXm +kUU) , (15)

where A ~ 0 is a Lagrange multiplier that satisfies the equation

dA = _ a£1 = O.
dx aU I

Hence A is a positive constant to be chosen such as to satisfy (6). Clearly, minimization
of (15) yields (13), as expected.

4. OPTIMUM CANTILEVER ON ELASTIC FOUNDATION
FOR PRESCRIBED DISPLACEMENT

To illustrate the method and the problems associated with the numerical computa
tions, we consider the case of a cantilever beam laying on elastic foundation and subject
to a prescribed displacement at x = XI' The boundary conditions of equations (1) and (2)
are

U(O) = 0,

v(O) = 0,

m(L) = M,

t(L) = T.
(17)

For simplicity we rewrite equations (11) in terms of U, B, mand t given by (12), i.e.

du _
dx = v,

dB 1_
- --m,
dx IX

dm -t,
dx

:~ = e5(x-xd-ku,

(18)
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subject to the homogeneous boundary conditions

u(O) = v(O) = 0

m(L) = l(L) = O.
(19)

So formulated the solution of the optimum beam reduces to the task of integrating
equations (1), (2) and (18) subject to boundary conditions (17) and (19), respectively. These
two systems of equations are coupled together through the optimality condition (13). In
a number of important cases in the applications we possess an explicit representation for
the minimum operation in (13), simplifying in some sense the solution of the system. In
any case, this nonlinear boundary value problem can be integrated using a quasilineariza
tion scheme as in [6]. We shall not pursue this path here, i.e. a direct treatment of the
nonlinear boundary value problem, in favor of the implementation of a simple, first order,
stable iterative method based in ideas of invariant imbedding. This is done in the next
section.

5. INVARIANT IMBEDDING

For a given nominal design (x, we consider the uncoupled linear boundary-value systems
given by equations (1), (2), (17) and (18), (19), respectively. First we consider system (1), (2).
Instead of boundary conditions (17) we set

u(X) = w,

v(X) = z,

m(L) = M,

t(L) = T,
(20)

i.e. we consider the families of beams of length L - X subject to arbitrary displacements
wand z at the end x = X. This is an "imbedding" procedure in the fashion of invariant
imbedding [7], that affords the property of reducing the computation of the original
boundary-value problem (1), (2), (17), to a stable, two-sweep, procedure.

We seek solutions of the form

t(X) = r1(X)w+rdX)z+sl(X),

m(X) = r21(X)w+r 2(X)z+S2(X),
(21)

Differentiation of (21) with respect to X and elimination of the derivatives w' = u'(X)
and z' = v'(X) using equations (1) and (2) evaluated at x = X and further elimination of
t(X) and m(X) using (21) yields

and
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a system of equations that must be valid for any wand z. Therefore

(22)

a system of Riccati equations subject to the initial conditions at X = L,

(23)
r1(L) = rdL) = r21(L) = r2(L) = 0,

sl(L) = T, s2(L) = M,

obtained upon consideration of equations (20) and (21). Consideration of the second and
third equation in (22), and corresponding initial conditions readily yields

(24)

an expression of Maxwell theorem derived from invariant imbedding. Therefore equa
tions (22) and (23) reduce to

r'l = k 1 2 r1(L) = 0,- +-r12 ,
r:x

r'12 =
1

rdL) = 0,-r1+-r12r2,
r:x

r~ = I 2 r2(L) = 0, (25)-2r[2+-r2'
r:x

, 1
s[(L) = T,s[ = q+-r12s2,

r:x

, 1
s2(L) = M.S2 = -SI +~r2s2'

(26)

v(o) = 0,

u(o) = 0,

dv
dX

Substitution of m(X) given by the second equation (21) in equations (1) evaluated at x = X,
and due consideration of equations (17) and (20), yield

du
-=V
dX '
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an initial value problem in the forward direction for the deflection u and slope v of the
beam, where the quantities r12 , rz and Sz are given by the integration of (25) in the back
wards direction. Substitution of u and v given by (26) in (21), taking into account that
w = u(X) and z = v(X), finally yields the remaining state variables of the beam i.e. the
moment m and the shear force t in the interval 0:::;; X :::;; L.

We can treat the virtual system (18) in a similar fashion. We consider u, v, mand I
satisfying equations (18) to be subject to the boundary conditions

u(X) = w,
v(X) = z,

m(L) = 0,

I(L) = 0,
(27)

(28)

and write for I(X) and m(X), the missing boundary conditions of the imbedded beam of
length L X, equations similar to (21), Le.

I(X) = r1(X)w+rdX)z+sl(X),

m(X) = r 21(X)w+riX)z+sz(X).

Carrying out the same perturbation analysis done to equations (21), on equations (28),
we obtain

Similarly, we can write

du _
·_=v
dX '

dv 1(_ _ _ _ _)
dX = -~ r12u+rZv+sz ,

r 1z(L) = 0,

riLl = 0,

sz(L) = o.

u(O) = 0,

v(O) = 0,

(29)

(30)

an initial value problem for uand vobtained after substitution of iii given by the second
equation (28), in the first two equations (18) evaluated at x = X. Finally, I and mcan be
obtained from (28) recalling that w = u(X) and that z = v(X).

6. A TWO SWEEP ITERATIVE PROCEDURE

Using the results of the last section we can now implement a simple iterative method
for the solution of the optimization problem. To this end let d n) denote the value of the
quantity a at the nth iteration. Then at a generic iteration (n + 1) we use the currently
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available design a(n) to integrate (25) in the backwards direction and subsequently (26) in
the forward direction, computing in turn m(n+ 1) given by (21). Similarly we compute the
values of m(n+ 1) by using the two sweep process given by (28)-(30). The improved value
of the design a(n+ 1) follows from the optimality condition

[

m(n+ l)m(n+ 1) ~

a(n+l) = argm!n A(n+l) a +g(a,x)J' (31)

where the new estimate of A = A(n+ 1) needs to be taken such as to ensure an appropriate
convergence of the sequence U(n)(Xl) to the prescribed value U 1 • This can be done in a
number of ways. In general we shall use formulas of the type

A(n+ 1) = F(A,ln), U(n)(Xl), u<n-l)(X
1

) .. .). (32)

For example, we could simply take

(33)

The procedure is repeated until convergence is achieved. Initially we need an a priori
estimate of the design a(O). In the absence of special information, a uniform design a(O)(x) =
const. is usually taken as the initial design. A numerical example in Section 8 will illustrate
the application of the method.

7. OWN WEIGHT

When the own weight of the beam is to be taken into account, q in equations (2), (to)
and (25) must be replaced by

q = p+yA, (34)

where p are the external forces, y is the specific weight of the beam and A the cross sectional
area given by equation (4). Therefore the optimality condition (13) must be substituted by

(35)

and equation (34) must be taken into account when integrating equations (25). Similarly,
other mass forces can be taken into account.

8. STABILITY CONSIDERATIONS

In order to prove the stability of the method, we should show that U and v given by
(25) and (26) are stable with respect to small errors introduced in the computational
process. To this end it is enough to prove the stability of the differential system (25) and,
in particular, of the quantities r1, r12 and r2. We rewrite the first three equations (25) in
the matrix form

R' = -A-BR-RBT +RCR, R(L) = 0, (36)
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where

r l r12 k 0 0 0 0 0

R= A= B= C=

r21 r2 0 0 0 0 -
CL

The stability of the Riccati equation (36) in the backwards direction follows from the fact
that C > 0 (since CL 2 0). The stability of R is clearly enough to ensure the stability of
u, v, m and t. Similar considerations hold for it, v, mand t.

9. NUMERICAL EXAMPLES

(a) Cantilever on elastic foundation

We consider a beam of the sandwich type such as that whose cross-section is indicated
in Fig. 1. In this case if 2h is a fixed quantity denoting the distance between the covering
sheets and AI2 is the area of each one of the sheets, we have CL = EI = EAh 2 and g in (4)
reduces to

(37)

(38)

The volume is therefore proportional to CL, i.e.

v = E~2 f: CL dx.

In addition we shall take Xl = Land q = Pb(x-L), i.e. we prescribe the displacement Ul

in correspondence with a concentrated load applied at the free end of the cantilever. The
reason to consider this simplified example is because under the present assumptions we
can afford a closed form solution of the problem that can be used to compare the accuracy
of the numerical procedures. In fact, in our present case we have m = Pm and equation
(13) reduces to

(39)

FIG. 1. Beam cross-seclion.
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where j1 = (Eh 2IP)2 is a constant to be determined such that u(L) = ul • In the portions
of the beam where the design is continuously differentiable, (39) reduces to

(40)

Combining (1) and (39) we obtain

(41)

A solution that satisfies the nonlinear differential equation (41) and the boundary condi
tions u(O) = u'(O) = 0 and u(L) = u 1 is given by

u(x) = U 1x 21U. (42)

Equation (42) is valid if sign m = sign u", a condition that is clearly fulfilled in our example.
The curvature is given by

(43)

Combining (40) and (43),
0:0 1'1 = L 2ml2u 1 (44)

where the bending moment m can be readily computed by direct integration, namely,

m = P(L-x)- s: (z-x)ku dz = PL(1-11)-ku 1L 2(3-4q+q4)/12, (45)

where we put 11 = xlL. In a similar fashion we can derive for the shear force t the expression

(46)

where

(47)

(48)

Combination of (44) and (45) yields

aop1 = 1 I] - (3(3 - 41] + 1J4),

where fi is a dimensionless design given by

fl 2uto:lPL3. (49)

Clearly, the range of {3 for which flop! is positive is 0 ~ {3 ~ 1· In Fig. 2, flopl given by (48)
is presented for several values of (3. For purposes of comparison, the same example was
solved using the procedure outlined in Section 6. At a generic iteration we integrate
equations (25) in the backwards direction using the currently available estimate for the
design. There is no need to integrate equations (29) since in this particular case we have
m = Pm. Subsequently, using the values of the r's previously computed, we integrate (26)
in the forward direction. In turn we calculate a new, upgraded, estimate of the design by
means of

(50)

an expression for a(n+ l) that follows from (31) by taking derivatives and making m = Pm
and g alEh2. In equation (50), j1(n+1) given by

(n+ 1) _ Eh2
1(n+ 1)

j1 --I\.

P
(51)
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FIG. 2. Optimum beam designs.

is a constant at each iteration that must be chosen such as to ensure the convergence of
the sequence uln)(x l ) to the prescribed value U l . We have taken in the present case

fJ.(n+ 1) = fJ.(n)u(n)(Xl)/U l • (52)

The procedure is continued until the following convergence criterion

(53)

where

(54)

is fulfilled. All the integrations were performed numerically using an Adams Moulton
scheme with step size 0·005 on a CDC 6400 computer. The resulting values for three
different values of 13 and at four equidistant sections of the cantilever are presented in
Table 1. It is seen that in order to reach the same accuracy, the number of iterations
increases for increasing values of the design parameter 13. On the other hand it is of interest
to note that the convergence ofthe process is of an oscillatory type. This can be appreciated
in Fig. 3 where the relative error Gk us. the number of iterations k for two different values
of 13 has been plotted. Methods to improve the convergence properties of the process can
be devised for the present problem but we shall not enter in that discussion here.

A further application of the method in connection with piecewise constant design is
presented below. The design is taken of the form

N

IX = L CiH(X - Xi),
i= 1

H(x-x i ) = {~ if X ;?: Xi

if X < Xi'
(55)

The problem consists in determining the cross sectional stiffness Ci and the lengths Xi

such as to minimize the volume of the beam. The values of Ci are constrained to be one of
any possible combinations of a given set of values 1X 1 , 1X 2 , .•• ,IXM . This is a version of a
piecewise constant optimum design problem that occurs when the flanges of the beam
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TABLE 1. COMPARISON OF EXACT AND COMPUTED DESIGNS (CANTILEVER BEAM ON ELASTIC FOUNDATION)

0'(0)

0'(1/) initial Ek =

fJ 1/ exact estimate a(k)(1/) a(H 1)(1/) max(lskl, ISH d, ISH 21) 10' il(k)1

0·00 0·75000 2·0 0·74922(8) 0·74983(9) 0·82 x 10 - 3(8) 0·78 x 10- 3(8)

1 0·25 0·58301 2·0 0·58246(8) 0·58290(9) 0·75 x 10- 3(8) 0·55 x 10- 3(8)
12 0·50 0-41146 2·0 0·41114(8) 0-41140(9) 0·64 x 10- 3(8) 0·32 x 10- 3(8)

0·75 0·22363 2·0 0·22351(8) 0·22362(9) 0·48 x 10-3(8) 0·12 x 10- 3(8)

0·00 0·50000 2·0 0·50009(15) 0·49979(16) 0·60 x 10- 3(15) 0·09 x 10- 3(15)

1 0·25 0·41602 2·0 0·41604(15) 0·41584(16) 0·48 x 10- 3(15) 0-02 x 10·· 3(15)
"6 0·50 0·32292 2·0 0·32315(14) 0·32288(15) 0·83 x 10- 3(14) 0·23 x 10- 3(14)

0·75 0·19727 2·0 0·19732(14) 0·19721(15) 0·55 x 10- 3(14) 0-05 x 10- 3(14)

0·00 0·25000 2·0 0·25026(28) 0·25040(29) 0·59 x 10- 3(28) O·26 x 10 - 3(28)

1 0·25 0·24902 2·0 0·24907(27) 0·24927(28) 0·80 x 10- 3 (27) 0·05 x 10- 3(27)

" 0·50 0·23428 2·0 0·23432(26) 0·23450(27) 0·80 x 10-3(26) 0·06 x 10- 3(26)
0·75 0·17090 2·0 0·17084(25) 0·17097(26) 0·74 x 10- 3(25) 0·06 x 10 - 3(25)

k = iteration number.

must be constructed using a number of available sections ell' ell"'" elM' Substituting el

given by (55) in the optimality condition (39), we can solve this problem by minimizing
with respect to all possible values of Ci . In the present example we have considered
<Xl = <Xl = ... = el6 = 0·125. Therefore Ci = 0·125j(i) where the possible values ofj are 1--6.
The results are shown in Fig. 4 where a comparison with the unconstrained solution is
possible.

002 r-----.-.-,---,-----------,

001

-0001

'YJ =0.0

-OO2L------l'----'---------------'

FIG. 3. Relative error vs. number of iterations.
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00
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FIG. 4. Comparison of design criteria.

(b) Clamped beam under uniformly distributed load

An optimal design is characterized by

mm> 0, (56)

a convexity condition that follows from consideration of the optimality condition (13).
During the computation of the successive approximations following the procedure devel
oped in Section 6, equation (56) might be violated leading to an indeterminacy in equation
(13), unless additional information is furnished. This can be done in a number of ways.
For example, we can require a positive lower bound for the design CL, i.e.

IX ~ (j > 0, (57)

where (j is usually taken of the order of magnitude of the step of integration of the equations.
This problem did not occur in our previous example involving the cantilever on elastic
foundation, because in that case, equation (56) was identically satisfied since m = Pm.

The purpose of the present example is to show that equation (57) is enough to bypass
the difficulties created by a possible violation of (56) during the first iterations of the
process. To this end we consider a sandwich clamped beam of length 2L subject to uniformly
distributed load q. It is required that the deflection at the middle be u1 . The exact optimal
solution can be obtained without difficulties. In fact, assuming CL to be continuously
differentiable, the optimality condition is given by

CLopt = j1t(mm)t, (58)

where j1t is a positive constant to be determined such as to satisfy the deflection condition
at the center of the beam. Since the beam is clamped at both ends, there will be an inflection
point symmetrically located at a distance X from both ends. The value of X will be obtained
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from the condition of minimum volume of the beam, which on account of (58) reads

min fL (mmyl: dx,
x 0

(59)

where m and mare given by

m = -(X -x)(2L-X -x)q/2,

m = -(X -x)/2.
(60)

(62)

X < x :s; L,

o :s; x :s; X,

From this minimization problem we obtain X as the real solution of

(512-224~2)X3-(1473-672~2)LX2+(1395-672~2)L2X-(433-224~2)L3 = 0, (61)

or, X = 0·5022, with four exact decimal places. The deflection u can be readily obtained
by integration of the differential equations

u" = (~r(2L-X -x)t,

u" = - (~r(2L-X -x)t,

subject to the initial conditions

u(O) = u'(O) = 0,

and the continuity conditions

u(X-) = u(X+), u'(L) = O.

Making

(63)/It = 2 qt [(16~2-7)(L - X)t - (4L - 7X)(2L - X)t],
15 U I

we satisfy the deflection condition at x = L.
The optimal design obtained using the method of successive approximations may be

compared with the exact one given by (58) and (63) in Fig. 5 and Table 2. In that example,
the dimensionless design ii = (lOudqL4)a and the dimensionless quantities '1 = x/L and
'10 = X/L have been introduced. The procedure used to compute the solution using the

TABLE 2. COMPARISON OF EXACT AND COMPUTED DESIGNS (CLAMPED--CLAMPED BEAM UNDER UNIFORMLY

DISTRIBUTED LOAD)

I) a(I) a(O)(I) a(l)(I) a(2)(I) a(IO)(I) a(20)(I) a(30)(I)

exact initial approximate

0·00 0·75560 0·5 0·58926 0·74725 0·72994 0·74267 0·74948
0·20 0-42326 0·5 0·30957 0·39508 0·39632 0·40962 0·41649
0·40 0·13168 0·5 0·05271 0·08591 0·10335 0·11719 0·12414
0·60 0·11387 0·5 0·13437 0·17484 0·14341 0·12904 0·12198
0·80 0·30576 0·5 0·30277 0·37943 0·33713 0·32215 0·31492
1·00 0·43171 0·5 0·41667 0·51566 0·46570 0·44985 0·44228

k = iteration number.
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FIG. 5. Comparison ofsuccessive approximation with optimal design in a clamped beam under uniformly
distributed load.

method of successive approximation is similar to that presented in Section 6, making
k = 0 and where the Riccati equations (25) and (29) were subject to appropriate initial
conditions in order to account for the difference in boundary conditions of the present
beam.
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A6cTpaKT-B HacTolimeH pa60Te, nyTeM HCnOJIb30BaHHlI BapHaltHOHHOro HC'lHCJIeHHlI, nOJIY'lalOTcli
yCJIOBHlI onTHMaJIbHOCTH .nJIli 6aJIKH Ha ynpyroM OCHOBaHHH, nOilBepJl(eHHOH .neHcTBHIO OrpaHH'IeHHOrO
nepeMemeHHlI. BnocJIellCTBHe, 3TH yCJIOBHlI HCnOJIb3YlOTCli B CMblCJle TO'lKH Ha'laJla llJIli onpe.neJleHHlI
cTa6HJIbHOrO MeTo.na llJIli '1HCJIeHHOrO peweHHlI 3a.na'lH onTHMH3altHH. Ha OCHOBe H.neH HHBapHaHTHOH
3a.neJIKH H MeTo.na rrOCTeneHHblX rrpH6JIHJKeHHH, CBOllHTCli npHHallJIeJl(amali HeJIHHeHHaSl KpaeBali 3a.na'la
K.nByM Wa6JIOHaM HTepaTHBHoro npOlteCca, B q,opMe CHCTeMbl .nHq,¢lepeHl.\HaJIbHbIX ypaBHeHHH PHKaTTH,
npH 3a.naHHb1X Ha'laJIbHblX yCJIOBHlIX, KOTopble npOllBJIlilOT y.no6Hble cBolicTBa YCToli'lHBOCTH. )J.aIOTCSl
.nBa npHMepbI, pa3pa6oTaHbi .no KOHlta, C lteJIblO HJIJIIOCTpaltHH npHMeHI1MOCTH 11 TO'lHOCTI1 MeTo.na.


